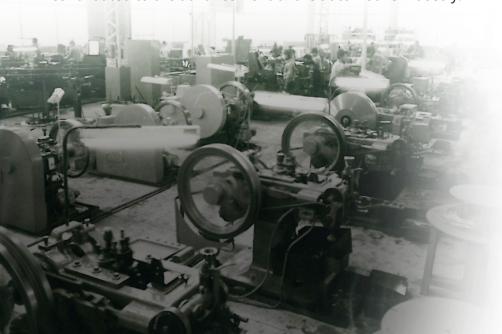


Automotive Fuse Catalogue

As a leading fuse maker, PEC will continue to deliver unrivaled quality and reliability through specialized technology.

The competitive automotive industry continues to introduce new products and technologies toward the creation of a safer, more comfortable automotive society. As one of the world's leading fuse makers,

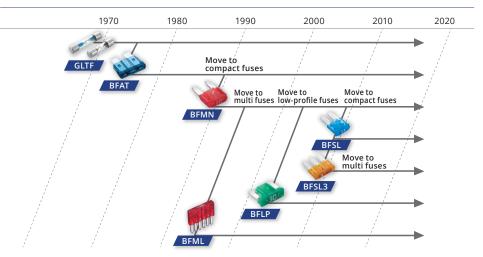
Pacific Engineering Corporation (PEC) is fully committed to achieving this goal.Fuses must be absolutely reliable as the last line of defense for electronic devices and electric wiring, which are increasingly being adopted in vehicles.PEC will continue to deliver original, high-quality products by leveraging its accumulated expertise and rigorous quality control.With an unwavering spirit, we will continue to pursue new challenges.



PEC

Meeting the demands of the prevailing times through technology and innovative thinking in step with developments in the automotive industry

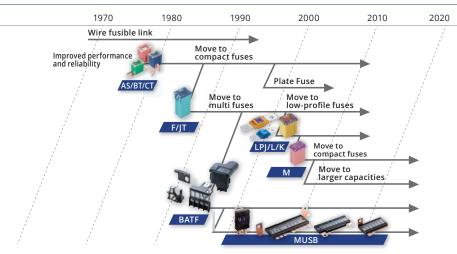
Fuses are an indispensable part of automobiles. The evolution in automobiles has propelled advances in fuses, while the invention of new fuses has conversely supported the development of new automobiles. Since PEC entered the fuse market in 1970, it has developed cutting-edge fuse products and contributed to the advancement of the automotive industry.



Blade Fuses

In 1960–70, automobiles were equipped with glass tube fuses, which were manufactured by hand at the time. PEC became the first company worldwide to successfully achieve automated mass production of such fuses in 1971, thus responding to the needs of various sectors including the automotive industry. Not long thereafter, in 1975, the company started production of blade fuses (auto fuses), which have become the most common type of automotive fuse in use today. Compared with glass tube fuses, blade fuses have a simpler structure and excel in terms of size (more compact), weight (lighter) and durability. PEC recognized the utility of blade fuses early on and has accumulated extensive manufacturing expertise for this product. Blade fuses have been successively adopted by automakers, leading to widespread usage. Prompted by automaker calls for products tailored to the growing complexity of automotive electronics and miniaturization of circuits, blade fuses went through a series of improvements that gave rise to multi fuses and more compact versions, and these are currently still utilized in a large number of automobiles.

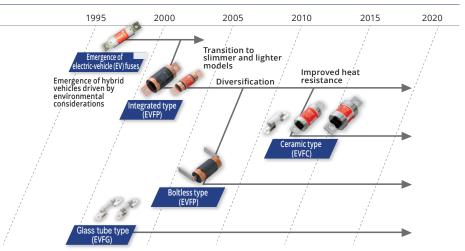
Transformation of Blade Fuses


PEC

Slow blow fuses

Moving into the 1980s, automobiles continued to increasingly incorporate electronics, and the pursuit of enhanced driving comfort led to the introduction of various new functions such as power windows, automatic wipers and air conditioning. In conjunction with this trend, automobiles started featuring multiple motors. Auto fuses, which blow out immediately when their threshold capacity is exceeded, were unsuitable for motors because the latter generate a current that far exceeds their rated load when they are switched on. This meant a new type of fuse was needed. In response, PEC developed slow blow fuses that delayed the temperature rise accompanying high currents and therefore did not blow out immediately. The company started sales of slow blow fuses in 1982. The product was well received by the market and came to be used worldwide. From the 2000s, PEC expanded its product portfolio with multi slow blow fuses, which protect multiple circuits, to accommodate the growing complexity of electronic control systems used in automobiles.

Transformation of Slow Blow Fuses


Electric vehicle fuses

From the late 1990s, automakers around the world started exploring the production of environmentally friendly vehicles. The most promising strategy at the time appeared to be the use of electricity as a power source for driving. Automakers thus ramped up development of hybrid vehicles, which combined conventional engines with electric motors, and electric vehicles (EVs). However, the resulting next-generation vehicles required an entirely new type of fuse. Electric-powered driving needs much higher voltages for on-board electronics, which conventional fuses could not withstand. In addition to blown fuses, another problem was that the high voltage could also give rise to an arc discharge phenomenon that would result in the destruction of circuits. To resolve these issues, PEC developed dedicated EV fuses for hybrid cars in 1997. The new fuses were adopted in the first hybrid vehicle that year and by various automakers later. To this day, they continue to be used by virtually all automakers

around the world in a wide range of applications, and they have also been adopted in F1 and other racing vehicles.

Transformation of High-voltage Fuses

Ampere Ratings and Housing Color

In fuses, the ampere rating and the type of fuse are indicated by the color of the fuse housing. Please refer to the diagram below for ampere ratings and housing colors.

International Standards

In Japan, standards for automotive fuses are deliberated on by the Fuse Subcommittee of the Society of Automotive Engineers of Japan, and are published in JASO standards. These standards then undergo a consultation process with representatives of various countries, and are harmonized internationally as ISO standards. *Standard International Products

UL Standard

The UL standard is the safety standard established by UL (Underwriters Laboratories Inc.), a U.S. non-profit organization. To meet the UL standard, electric products, parts, and materials must pass a safety test.

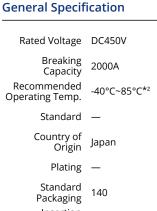
RoHS

The RoHS* Directive, an EU environmental regulation, prohibits from products specific substances such as lead and mercury, in order to reduce the environmental burden from the disposal of electric and electronic devices. *Restriction of Hazardous Substances

The ELV Directive, or end-of-life vehicle directive, is an EU set of environmental restrictions aimed at reducing the environmental burden of cars when they are being disposed of by reducing automotive waste and end-of-life vehicles. Under this regulation, automobile manufacturers are required to assume the costs for the recovery and recycling of car-related waste. *End of Life Vehicle Meeting the needs of hybrid and electric cars. High Voltage automotive fuses for next generation vehicles

EVFP(*φ*20)

Lightweight and compact High Voltage automotive fuses with excellent vibration resistance properties



Product Lineup

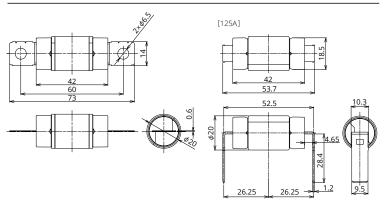
Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1	
60	2851	M6		1.30 mΩ	43.5 mV	
70	2855		M6 ¢20	1.10 mΩ	40.8 mV	
80	2853			M6	¢ 20	0.90 mΩ
100	2854			0.75 mΩ	40.5 mV	
125	2826			0.63 mΩ	41.5 mV	

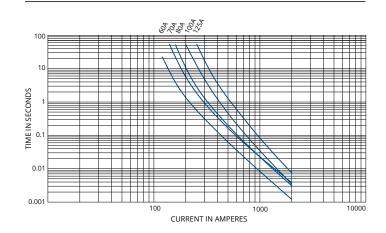
*1 Voltage drop: apply 50% of the rated current.

*In case a product other than the ones published in this document is desired, please contact us for details. *There is also plug-in type fuse. Please contact us for details.

Insertion Force

Pull-out Load —


Recommended Torque (7.2±2.2)N·m *2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	5 sec.	100 sec.	
300%	0.5 sec.	15 sec.	
500%	_	1 sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

PEC

EVF

EVFP(*\phi*30)

Lightweight and compact High Voltage automotive fuses with excellent vibration resistance properties

General Specification

Product Lineup

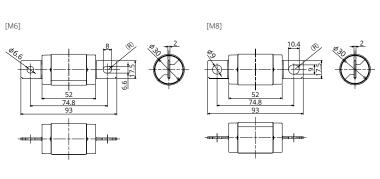
Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1	
150	2940			0.52 mΩ	44.3 mV	
175	2941			0.43 mΩ	43.8 mV	
200	2942	MG		0.37 mΩ	44.0 mV	
225	2943	MB	MO	M6	0.33 mΩ	43.2 mV
250	2944					0.31 mΩ
300	2945		420	0.25 mΩ	46.0 mV	
150	2950		¢30	φ30	0.52 mΩ	44.3 mV
175	2951					
200	2952	M8		0.37 mΩ	44.0 mV	
225	2953	IVI8		0.33 mΩ	43.2 mV	
250	2954			0.31 mΩ	44.0 mV	
300	2955			0.25 mΩ	46.0 mV	

Rated Voltage DC500V Breaking Capacity 16000A Recommended Operating Temp. Standard —

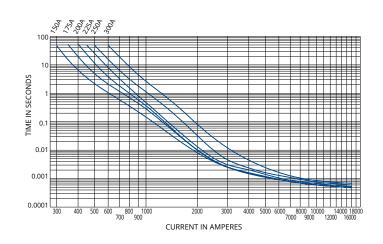
- Country of Origin Japan
 - Plating —
- Standard Packaging 80
- Insertion
- Force Pull-out Load —

Recommended M6(6.0±1.0)N·m

Torque M8(12.0±1.0)N·m *2 Please contact us for the details of


operating temperature.

Time-Current Characteristic


% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	5sec.	100sec.	
300%	0.5sec.	15sec.	
500%	_	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

Time-Current Characteristic Chart

*1 Voltage drop: apply 50% of the rated current.

*In case a product other than the ones published in this document is desired, please contact us for details.

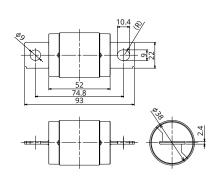
 $\overline{\mathsf{EVFP}}(\phi_{38})$

Lightweight and compact High Voltage automotive fuses with excellent vibration resistance properties

Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop
350	2976	M8	420	Carriege	Comission
400	2977				
450	2978		\$ 38	Coming up	Coming up
500	2979				

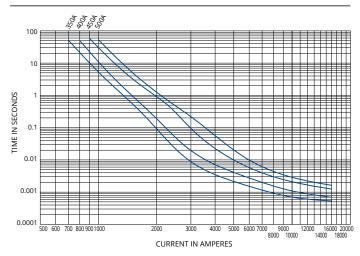
*In case a product other than the ones published in the document is desired, please contact us.


General Specification				
Rated Voltage	DC500V			
Breaking Capacity	16000A			
Recommended Operating Temp.	-40°C~85°C*			
Standard	_			
Country of Origin	Japan			
Plating	_			

- Standard Packaging 40
- Insertion
- Force
- Pull-out Load —
- Recommended Torque (12.0±1.0)N·m *2 Please contact us for the details of
- *2 Please contact us for the details of operating temperature.

Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	5sec.	100sec.	
300%	0.5sec.	15sec.	
500%	_	1sec.	


*The fuse characteristic may change depending on the conditions of use.

APEC

Dimensions

EVF

$EVFP(\phi 38)$ Tin plating

Lightweight and compact High Voltage automotive fuses with excellent vibration resistance properties

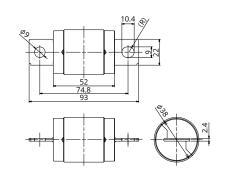
Product Lineup

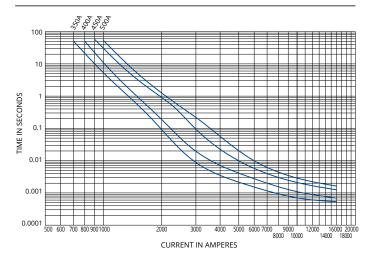
Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop
350	2986	M8	120	Comingon	Comission
400	2987				
450	2988		\$ 38	Coming up	Coming up
500	2989				

*In case a product other than the ones published in the document is desired, please contact us.

General Specification				
Rated Voltage	DC500V			
Breaking Capacity	16000A			
Recommended Operating Temp.	-40°C~85°C*2			
Standard	_			
Country of Origin	Japan			
Plating	Tin plating			
Standard Packaging	40			
Insertion Force	_			
Pull-out Load	_			

Recommended Torque (12.0±1.0)N·m


*2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	5sec.	100sec.	
300%	0.5sec.	15sec.	
500%	_	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

EVFP(38×64)

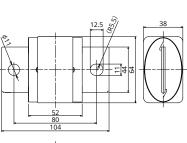
RoHS ELV

Lightweight and compact High Voltage automotive fuses with excellent vibration resistance properties

Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop		
500	2975	M10					
600	2970						
700	2971			Coming up	Comingun		
800	2972		_	Coming up	Coming up		
900	2973						
1000	2974						

*In case a product other than the ones published in the document is desired, please contact us. *SOP planned for March 2019. Please contact us for the details.


General Specification					
Rated Voltage	DC500V				
Breaking Capacity	16000A				
Recommended Operating Temp.	-40°C~100°C*2				
Standard	_				
Country of Origin	Japan				
Plating	Tin plating				
Standard Packaging	32				
Insertion Force	_				
Pull-out Load	_				
Recommended	(16.0±1.0)N·m				

Torque (' 1.0) *2 Please contact us for the details of

Time-Current Characteristic

% of	Operati	ng Time
Ampere Rating(A)	Min	Max
110%	4hrs.	-
200%	5sec.	100sec.
300%	0.5sec.	15sec.
500%	_	1sec.

*The fuse characteristic may change depending on the conditions of use.

APEC

Time-Current Characteristic Chart

Data coming up

R

operating temperature.

Dimensions

11

$\mathsf{EVFC}(\phi_{20})$

High Voltage automotive fuses with excellent durability properties

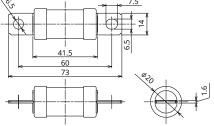
Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop
60					
70					
80	under development	M6	¢ 20	under development	under development
100					
125					

*This product is under development, so please contact us for the details.

General Specification		
Rated Voltage	DC500V	
Breaking Capacity	16000A	
Recommended Operating Temp.	-40°C~125°C*²	
Standard	_	
Country of Origin	Japan	
Plating	Tin plating	
Standard Packaging	140	
Insertion Force	_	
Pull-out Load	_	
Recommended Torque	(9.0±1.0)N·m	

*2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of	Operati	ng Time
Ampere Rating(A)	Min	Max
110%	4hrs.	_
135%	150sec.	3600sec.
150%	20sec.	1000sec.
200%	8sec.	150sec.
300%	1sec.	15sec.
500%	0.05sec.	1sec.

*The fuse characteristic may change depending on the conditions of use.

Dimensions

Time-Current Characteristic Chart

under development

EVF

PEC

EVFC(*φ*30)

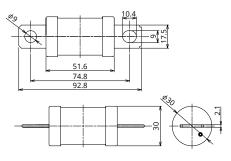
High Voltage automotive fuses with excellent durability properties

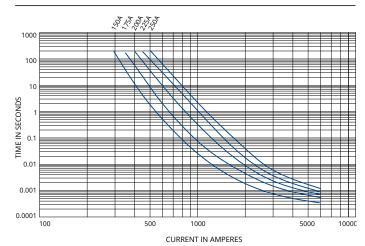
Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1
150	2870			0.67 mΩ	160 mV
175	2871			0.56 mΩ	170 mV
200	2872	M8	¢ 30	0.47 mΩ	170 mV
225	2873			0.40 mΩ	170 mV
250	2874			0.35 mΩ	180 mV

*1 Voltage drop: apply 100% of the rated current.

*In case a product other than the ones published in this document is desired, please contact us for details.


General Specification		
Rated Voltage	DC450V	
Breaking Capacity	6000A	
Recommended Operating Temp.	-40°C~125°C*²	
Standard	_	
Country of Origin	Japan	
Plating	Ni Plating	
Standard Packaging	80	
Insertion Force	_	
Pull-out Load	_	
Recommended Torque	(12.0±1.0)N∙m	
*2 Please contact us for the details of operating temperature.		


Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	1sec.	300sec.	
300%	0.2sec.	30sec.	
500%	0.05sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

EVF

$\overline{\mathsf{EVFC}}(\phi_{38})$

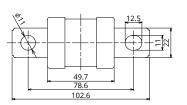
High Voltage automotive fuses with excellent durability properties

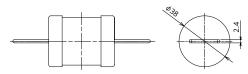
Product Lineup

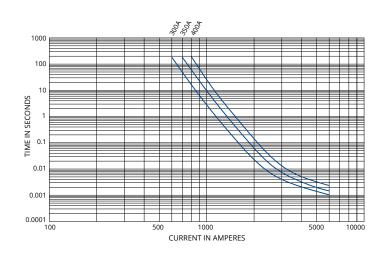
Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1
300	2876			0.255 mΩ	125 mV
350	2877	M10	ø 38	0.195 mΩ	135 mV
400	2878			0.175 mΩ	150 mV

*1 Voltage drop: apply 100% of the rated current.

*In case a product other than the ones published in this document is desired, please contact us for details.


General Specification		
Rated Voltage	DC450V	
Breaking Capacity	6000A	
Recommended Operating Temp.	-40°C~125°C*²	
Standard	_	
Country of Origin	Japan	
Plating	Ni Plating	
Standard Packaging	40	
Insertion Force	_	
Pull-out Load	_	
Recommended Torque	(16.0±1.0)N∙m	
*2 Please contact us for the details of operating temperature.		


Time-Current Characteristic


% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	_	
200%	1sec.	300sec.	
300%	0.2sec.	30sec.	
500%	0.05sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

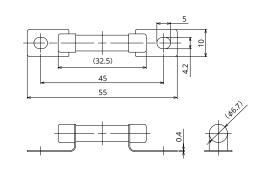
EVFC(*\phi*6.7)

Fuses to protect auxiliary system circuits such as electric compressors and DC/DC converters

Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop
1	2704	M4	ø6.7	645.0 mΩ	Coming up
5	2705	114	ψ0.7	43.0 mΩ	Coming up

*In case a product other than the ones published in the document is desired, please contact us. *This product is under development, so please contact us for the details.


General Specification		
Rated Voltage	DC450V	
Breaking Capacity	2000A	
Recommended Operating Temp.	-40°C~100°C*2	
Standard	_	
Country of Origin	China	
Plating	Ni Plating	
Standard Packaging	400	
Insertion Force	_	
Pull-out Load	_	
Recommended Torque	(2.1±0.2)N·m	
*2 Please contact us for the details of operating temperature		

Time-Current Characteristic

% of	Operati	perating Time		
Ampere Rating(A)	Min	Max		
110%	100hrs.	-		
350%	_	0.5sec.		
600%	_	0.2sec.		

*The fuse characteristic may change depending on the conditions of use.

Dimensions

PEC

Time-Current CharacteristicChart

Data coming up

*2 operating temperature. $EVFG(\phi 7.2)$

Fuses to protect auxiliary system circuits such as electric compressors and DC/DC converters

Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1
10	2754	M4		Coming up	Coming up
15	2729			6.3 mΩ	52 mV
20	2759		φ7.2	3.9 mΩ	41 mV
30	2737			2.5 mΩ	41 mV
30	2728	for PCB Mounting		Coming up	Coming up

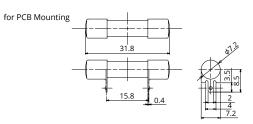
*1 Voltage drop: apply 50% of the rated current.

*In case a product other than the ones published in the document is desired, please contact us. *PCB-mount type is under development, so please contact us for the details.

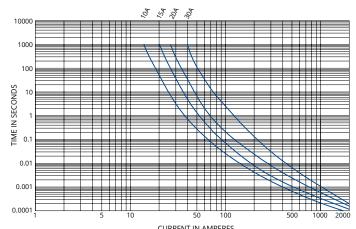
General Specification				
Rated Voltage	DC450V			
Breaking Capacity	2000A			
Recommended Operating Temp.	-40°C~100°C*2			
Standard	-			
Country of Origin	Japan/Thailand			
Plating	Ni Plating			
Standard Packaging	300			
Insertion Force	_			

Pull-out Load —

Recommended (2.1±0.2)N·m Torque *2 Please contact us for the details of


operating temperature.

Time-Current Characteristic


% of	Operati	ng Time
Ampere Rating(A)	Min	Max
110%	4hrs.	—
135%	300sec.	3600sec.
200%	5sec.	100sec.
300%	0.5sec.	15sec.
500%	_	1sec.
600%	— (0.05sec.)	— (1sec.)
		()2759

*The fuse characteristic may change depending on the conditions of use.

4.2 31.8 45 55

Time-Current CharacteristicChart

CURRENT IN AMPERES

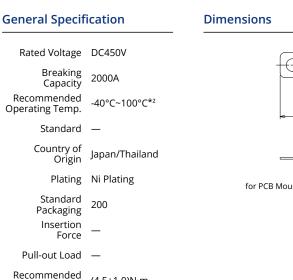
Dimensions

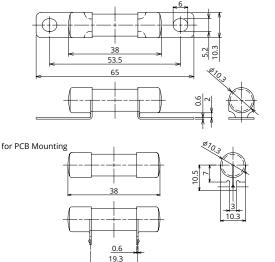
16

EVF

 $EVFG(\phi 10.3)$

Fuses to protect auxiliary system circuits such as electric compressors and DC/DC converters




Product Lineup

Ampere Rating(A)	Part Number	Bolt Size	Diameter	Resistance Value	Voltage Drop*1
15	2744	М5		7.4 mΩ	63 mV
20	2743			4.2 mΩ	47 mV
30	2742		410.2	2.8 mΩ	47 mV
40	2748		¢ 10.3	2.1 mΩ	48 mV
50	2749			1.6 mΩ	48 mV
40	2645	for PCB Mounting		_	_

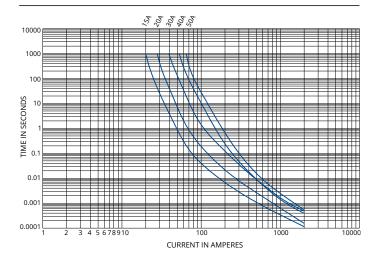
*1 Voltage drop: apply 50% of the rated current.

*In case a product other than the ones published in the document is desired, please contact us. *PCB-mount type is under development, so please contact us for the details.

A PEC

Time-Current Characteristic

Torque


operating temperature.

*2 Please contact us for the details of

(4.5±1.0)N·m

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	4hrs.	-	
135%	300sec.	3600sec.	
200%	5sec.	100sec.	
300%	0.5sec.	15sec.	
500%	_	1sec.	

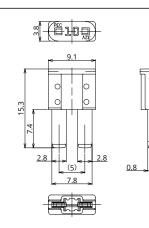
*The fuse characteristic may change depending on the conditions of use.

Automotive fuses that are most used by the automotive manufacturers in the world

Blade Fuse

BFSL

This state-of-the-art blade fuse was realized by reducing the width of the BFMN to offer space reduction


Product Lineup

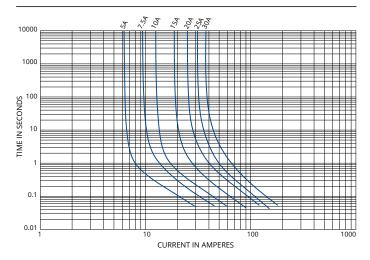
Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
3	1168	Violet	Coming up	Coming up
4	1169	Pink	Coming up	Coming up
5	1173	Tan	17.3 mΩ	117 mV
7.5	1174	Brown	10.7 mΩ	109 mV
10	1175	Red	7.85 mΩ	104 mV
15	1176	Blue	5.05 mΩ	100 mV
20	1177	Yellow	3.65 mΩ	95 mV
25	1178	Natural	2.75 mΩ	88 mV
30	1179	Green	2.18 mΩ	82 mV

%1 Voltage drop: apply 100% of the rated current.

*Adjusting the specification for 3A and 4A. Please contact us for the details.

General Specif	ication
Rated Voltage	DC32V
Breaking Capacity	1000A
Recommended Operating Temp.	-40°C~120°C*2
Standard	_
Country of Origin	Japan
Plating	Ag Plating
Standard Packaging	18,000
Insertion Force	_
Pull-out Load	_

Time-Current Characteristic


operating temperature.

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	120sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	
*Th - 6		12	

*The fuse characteristic may change depending on the conditions of use.

Time-Current Characteristic Chart

Dimensions

BFSL-3

RoHS

ELV

APEC

BFSL-3 is a multi terminal state-of-the-art blade fuse

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
5	1183	Tan	16.9 mΩ	110 mV
7.5	1184	Brown	10.6 mΩ	104 mV
10	1185	Red	7.94 mΩ	104 mV
15	1186	Blue	5.07 mΩ	97 mV

%1 Voltage drop: apply 100% of the rated current.

General Specification Rated Voltage DC32V

Breaking Capacity

Standard —

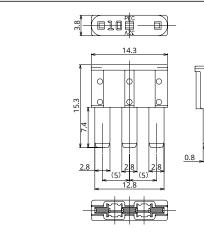
Country of Origin Japan

Standard

Packaging Insertion Force Pull-out Load — Recommended Torque *2 Please contact us for the details of

operating temperature.

Plating Ag Plating

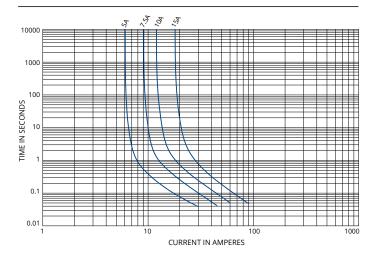

10,000

Recommended Operating Temp.

1000A

-40°C~120°C*2

Dimensions



Time-Current Characteristic

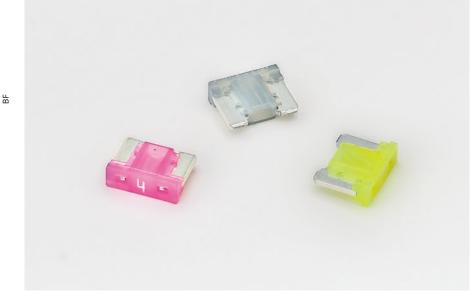
Operating Time		
Min	Max	
100hrs.	_	
0.75sec.	120sec.	
0.25sec.	50sec.	
0.15sec.	5sec.	
0.04sec.	0.5sec.	
0.02sec.	0.1sec.	
	Min 100hrs. 0.75sec. 0.25sec. 0.15sec. 0.04sec.	

*The fuse characteristic may change depending on the conditions of use.

Time-Current Characteristic Chart

ВΕ

Blade Fuse


BFLP

International Standard Part

ELV

BFLP is a lower-cost and more compact BFMN

RoHS

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
2	1190	Gray	46.6 mΩ	126 mV
3	1191	Violet	33.7 mΩ	137 mV
4	1192	Pink	20.6 mΩ	109 mV
5	1193	Tan	16.5 mΩ	115 mV
7.5	1194	Brown	10.2 mΩ	105 mV
10	1195	Red	7.38 mΩ	104 mV
15	1196	Blue	4.55 mΩ	97 mV
20	1197	Yellow	3.25 mΩ	94 mV
25	1198	Natural	2.50 mΩ	93 mV
30	1199	Green	1.94 mΩ	88 mV

%1 Voltage drop: apply 100% of the rated current.

Rated Voltage	DC58V
Breaking Capacity	1000A
Recommended Operating Temp.	-40°C~120°C*2

General Specification

Standard ISO8820-9

Country of Origin Japan/Mexico

Plating Ag Plating

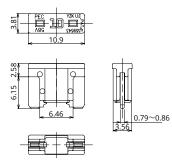
Standard Packaging Insertion

Force

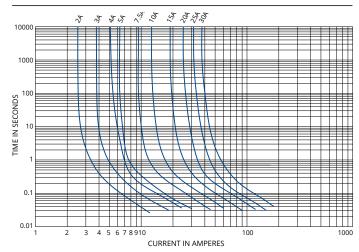
Pull-out Load —

Recommended _____

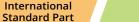
Torque


*2 Please contact us for the details of operating temperature.

Time-Current Characteristic


% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	600sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	

*The fuse characteristic may change depending on the conditions of use.


Dimensions

APEC

BFMN

ELV

UL standard

APEC

ВΕ

BFMN is a lower-cost and more compact BFAT

RoHS

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
1	1281	Black	121 mΩ	175 mV
2	1202	Gray	49.7 mΩ	140 mV
3	1203	Violet Viole t	29.6 mΩ	140 mV
4	1204	Pink	23.8 mΩ	136 mV
5	1205	Tan 📃	16.7 mΩ	112 mV
7.5	1207	Brown	11.1 mΩ	112 mV
10	1210	Red	7.82 mΩ	106 mV
15	1215	Blue	4.93 mΩ	99 mV
20	1220	Yellow	3.48 mΩ	95 mV
25	1225	Natural	2.58 mΩ	92 mV
30	1230	Green	2.12 mΩ	86 mV

%1 Voltage drop: apply 100% of the rated current.

•		
Rated Voltage	DC32V	
Brooking		

General Specification

Breaking Capacity 1000A Recommended Operating Temp. -40°C~120°C*2

Standard ISO8820-3

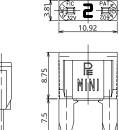
Country of Origin Japan

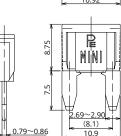
Plating Ag Plating

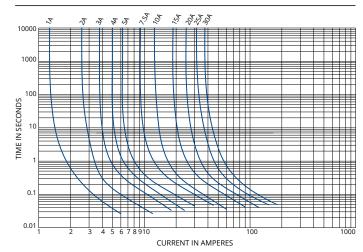
- Standard 10,000 Packaging
- Insertion Force

Pull-out Load —

Recommended Torque

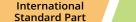

*2 Please contact us for the details of operating temperature.


Time-Current Characteristic


% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	600sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions



BFMN-S

ELV

PEC

The BFMN-S is a blade fuse with the housing at the same level of UL standard V-0

RoHS

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
5	1271	Tan 📃	16.7 mΩ	112 mV
7.5	1272	Brown	11.1 mΩ	112 mV
10	1273	Red	7.82 mΩ	106 mV
15	1274	Blue	4.93 mΩ	99 mV

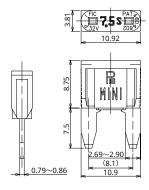
%1 Voltage drop: apply 100% of the rated current.

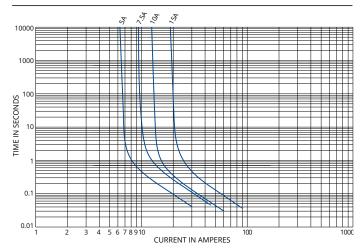
General SpecificationRated VoltageDC32VBreaking
Capacity1000ARecommended
Operating Temp.-40°C~120°C*2StandardISO8820-3Country of
OriginJapanPlatingAg PlatingStandard
Packaging10,000

Insertion Force

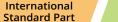
Pull-out Load —

Recommended _____ Torque ____


*2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	600sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	


*The fuse characteristic may change depending on the conditions of use.

Dimensions

BFAT-D

ELV

UL standard

PEC

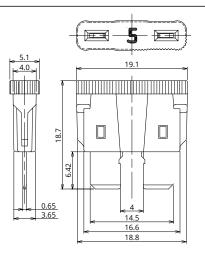
The BFAT is a blade fuse that has spread extensively in non-automotive applications

RoHS

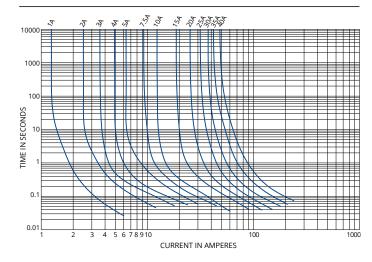
Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
1	1039	Black	156 mΩ	225 mV
2	1021	Gray	55.6 mΩ	175 mV
3	1022	Violet	31.7 mΩ	133 mV
4	1023	Pink	22.7 mΩ	128 mV
5	1041	Tan	17.5 mΩ	121 mV
7.5	1042	Brown	11.0 mΩ	112 mV
10	1043	Red	8.12 mΩ	116 mV
15	1044	Blue	5.08 mΩ	105 mV
20	1026	Yellow	3.58 mΩ	99 mV
25	1027	Natural	2.76 mΩ	96 mV
30	1028	Green	2.20 mΩ	92 mV
35	1029	Dark Green	1.76 mΩ	91 mV
40	1048	Orange	1.48 mΩ	95 mV

General Specification		
Rated Voltage	DC32V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~120°C*2	
Standard	ISO8820-3	
Country of Origin	Japan	
Plating	Sn Plating	
Standard Packaging	12,000	
Insertion Force	_	
Pull-out Load	_	
Recommended Torque		

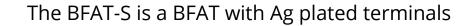

*2 Please contact us for the details of operating temperature.

Time-Current Characteristic


% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	600sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	
*The first share statistic statistic states at the second state at			

*The fuse characteristic may change depending on the conditions of use.

Dimensions


Time-Current Characteristic Chart

BF

Blade Fuse

BFAT-S

RoHS

International

Standard Part

Product Lineup

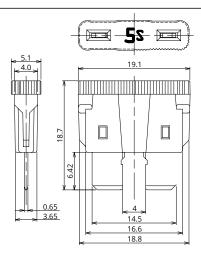
Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
5	1131	Tan	17.5 mΩ	121 mV
7.5	1132	Brown	11.0 mΩ	112 mV
10	1133	Red	8.12 mΩ	116 mV
15	1134	Blue	5.08 mΩ	105 mV
20	1135	Yellow	3.58 mΩ	99 mV
25	1136	Natural	2.76 mΩ	96 mV
30	1137	Green	2.20 mΩ	92 mV
40	1138	Orange	1.48 mΩ	95 mV

%1 Voltage drop: apply 100% of the rated current.

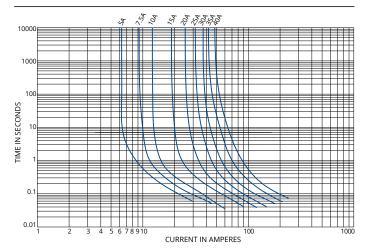
General Specification		
Rated Voltage	DC32V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~120°C*2	
Standard	ISO8820-3	
Country of Origin	Japan	
Plating	Ag Plating	
Standard Packaging	12,000	
Insertion Force	_	
Pull-out Load	_	
Recommended	_	

ELV

Torque


*2 Please contact us for the details of operating temperature.

Time-Current Characteristic


% of Ampere Rating(A)	Operating Time		
	Min	Max	
110%	100hrs.	_	
135%	0.75sec.	600sec.	
160%	0.25sec.	50sec.	
200%	0.15sec.	5sec.	
350%	0.04sec.	0.5sec.	
600%	0.02sec.	0.1sec.	
*The first shares to visting and the same descending and			

*The fuse characteristic may change depending on the conditions of use.

Dimensions

Here and the second sec

The safety and reliability of the fuses have dramatically increased and therefore their demand has expanded

Here and the second sec

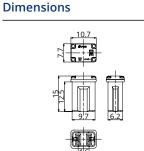
SBFC-M

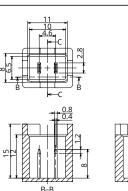
The SBFC-M is a more compact and more lightweight SBFC-LPJ fuse. It is the world's smallest and lightest SBF

Product Lineup

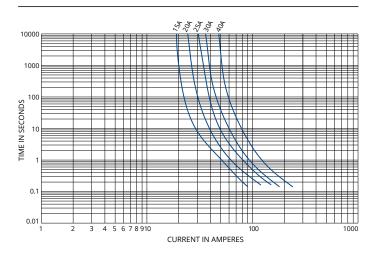
Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
15	3113	Gray	5.3 mΩ	97 mV
20	3123	Light Blue	4.0 mΩ	94 mV
25	3173	White	3.1 mΩ	93 mV
30	3133	Pink	2.6 mΩ	92 mV
40	3143	Green	2.1 mΩ	98 mV
	15 20 25 30	15 3113 20 3123 25 3173 30 3133	15 3113 Gray 20 3123 Light Blue 25 3173 White 30 3133 Pink	15 3113 Gray 5.3 mΩ 20 3123 Light Blue 4.0 mΩ 25 3173 White 3.1 mΩ 30 3133 Pink 2.6 mΩ

*1 Voltage drop: apply 100% of the rated current.


General Specification		
Rated Voltage	DC32V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~120°C*2	
Standard	JASO D612-4	
Country of Origin	Japan/Mexico	
Plating	Sn Plating	
Standard Packaging	4,000	
Insertion Force	44.1N	
Pull-out Load	4N~24.5N	
Recommended Torque	_	


*2 Please contact us for the details of operating temperature.

Time-Current Characteristic


% of Ampere Rating(A)	Operating Time		
	Min	Max	
110%	100hrs.	_	
135%	60sec.	1800sec.	
200%	5sec.	60sec.	
350%	0.2sec.	7sec.	
600%	0.04sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Cavity

SBFC-MS

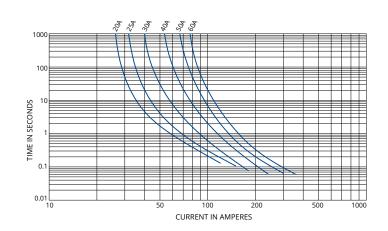
High-amperage SBFC-M

Product Lineup

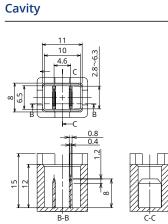
Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
15	3125	Gray		Coming up
20	3145	Light Blue		93.2 mV
25	3155	White		92.6 mV
30	3165	Pink	Coming up	79.6 mV
40	3175	Green		75.8 mV
50	3185	Red		83.7 mV
60	3195	Yellow		70.5 mV

*1 Voltage drop: apply 100% of the rated current. *For the details of 15A, please contact us.

General Specification		
Rated Voltage	DC32V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~120°C*2	
Standard	_	
Country of Origin	Japan	
Plating	Tin plating	
Standard Packaging	4,000	
Insertion Force	44.1N	
Pull-out Load	4N~24.5N	
Recommended Torque	_	
*2 Please contact us for the details of operating temperature.		


Time-Current Characteristic

% of	Operating Time	
Ampere Rating(A)	Min	Max
110%	100hrs.	_
135%	60sec.	1800sec.
200%	2sec.	60sec.
350%	0.2sec.	7sec.
600%	0.04sec.	1sec.


*The fuse characteristic may change depending on the conditions of use.

Time-Current Characteristic Chart

6.2

Dimensions

Here and the second sec

Slow Blow Fuse

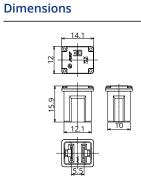
SBFC-LPJ

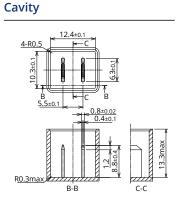
International Standard Part RoHS

ELV

PEC

The SBFC-LPJ is a more compact and more lightweight SBFC-JT

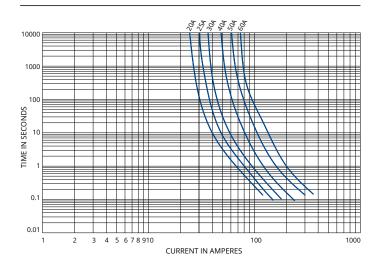

Product Lineup


SBF

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
20	3422	Light Blue	4.3 mΩ	103 mV
25	3472	White	3.5 mΩ	106 mV
30	3432	Pink	3 mΩ	103 mV
40	3442	Green	1.9 mΩ	92 mV
50	3452	Red	1.5 mΩ	92 mV
60	3462	Yellow	1.2 mΩ	93 mV

*1 Voltage drop: apply 100% of the rated current.

General Specification		
Rated Voltage	DC58V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~120°C*2	
Standard	ISO8820-4	
Country of Origin	Japan/Mexico	
Plating	_	
Standard Packaging	2,000	
Insertion Force	44.1N	
Pull-out Load	9.8N~24.5N	
Recommended Torque	_	



*2 Please contact us for the details of

operating temperature.

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	60sec.	1800sec.	
200%	5sec.	60sec.	
350%	0.2sec.	7sec.	
600%	0.04sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

SBFC-JT

ELV

Here and the second sec

Low-amperage plug-in type fuse

RoHS

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
20	3424	Light Blue	4.8 mΩ	113 mV
25	3474	White	3.7 mΩ	105 mV
30	3434	Pink	3.1 mΩ	106 mV
40	3444	Green	2.0 mΩ	92 mV
50	3454	Red	1.7 mΩ	92 mV
60	3464	Yellow	1.2 mΩ	93 mV

*1 Voltage drop: apply 100% of the rated current.

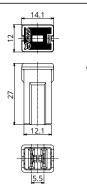
Rated Voltage	DC32V
Breaking Capacity	1000A
Recommended Operating Temp.	-40°C~120°C*2
Standard	ISO8820-4
Country of Origin	Japan/Mexico

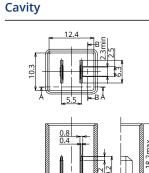
General Specification

- Plating Standard Packaging 3,000
- Insertion 44.1N Force

Pull-out Load 9.8N~24.5N

Recommended Torque _

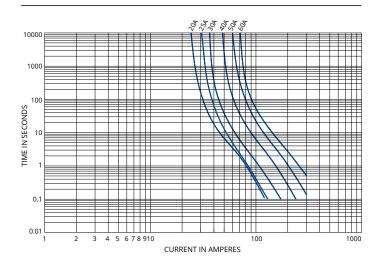

*2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
110%	100hrs.	_	
135%	60sec.	1800sec.	
200%	5sec.	60sec.	
350%	0.2sec.	7sec.	
600%	0.04sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions



SBF

Time-Current Characteristic Chart

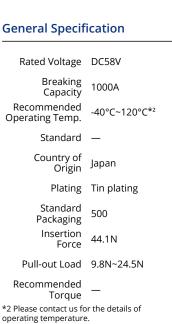
аЩія

10

S	ow	B	low	Fuse
_	· · · ·			

SBFC-ET

High-amperage plug-in type fuse

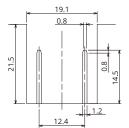

ELV

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
50	3340	Red	1.23 mΩ	84.4 mV
60	3350	Yellow	0.99 mΩ	91.2 mV
70	3360	Brown	0.95 mΩ	84.2 mV
80	3370	Black	0.88 mΩ	84.2 mV
100	3380	Blue	0.72 mΩ	86.5 mV
125	3390	Pink	0.56 mΩ	97.9 mV
150	3400	Gray	0.52 mΩ	107.1 mV

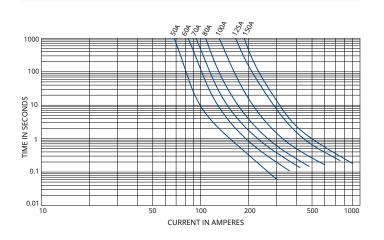
*1 Voltage drop: apply 100% of the rated current.

Time-Current Characteristic


% of Ampere Rating(A)	Operating Time		
	Min	Max	
110%	4hrs.	—	
150%	30sec.	3600sec.	
200%	5sec.	100sec.	
350%	0.2sec.	7sec.	
600%	0.04sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions


20.

Here and the second sec

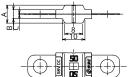
SBFW-LM5

RoHS

ELV

PEC

M5 bolt type


Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
30	3139	Orange	2.11 mΩ	86 mV
40	3149	Green	1.40 mΩ	77 mV
50	3159	Red	1.18 mΩ	73 mV
60	3169	Yellow	0.89 mΩ	71 mV
70	3179	Brown	0.72 mΩ	66 mV
80	3189	White	0.47 mΩ	51 mV
100	3107	Blue	0.41 mΩ	58 mV
125	3117	Pink	0.35 mΩ	59 mV

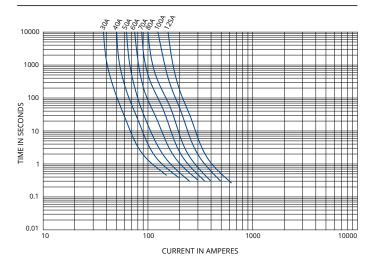
*1 Voltage drop: apply 100% of the rated current.

General Specification		Dimensions	
Rated Voltage Breaking Capacity Recommended Operating Temp.	DC58V 1000A -40°C~120°C* ²	· · · · · · · · · · · · · · · · · · ·	
Standard	ISO8820-5*3		
Country of Origin	Japan		Шþ
Plating	Sn Plating		
Standard Packaging	2,000		
Insertion Force	_		CURREN RARING

[CURRENT			DIME	ISION	
	RARING		Α	В	С	D
[30A~80A	M5 TYPE	8	4	0.4	5.4
	100A~200A	M5 TYPE	8.24	4.24	0.64	5.4

Recommended Torque (4.5±1.0)N·m *2 Please contact us for the details of

Packaging Insertion Force Pull-out Load —


operating temperature. *3 Except for the breaking capacity

Time-Current Characteristic

% of Ampere Rating(A)	Operating Time		
	Min	Max	
100%	100hrs.	_	
110%	4hrs.	—	
150%	90sec.	3600sec.	
200%	3sec.	100sec.	
300%	0.3sec.	3sec.	
500%	0.1sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

32

SBFW-L M6

International Standard Part

RoHS

ELV

PEC

M6 bolt type

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
30	3338	Orange	2.11 mΩ	86 mV
40	3348	Green	1.40 mΩ	77 mV
50	3358	Red	1.18 mΩ	73 mV
60	3368	Yellow	0.89 mΩ	71 mV
70	3378	Brown	0.72 mΩ	66 mV
80	3388	White	0.47 mΩ	51 mV
100	3319	Blue	0.41 mΩ	58 mV
125	3329	Pink	0.35 mΩ	59 mV
150	3108	Gray	0.36 mΩ	50 mV
175	3118	Tan	0.31 mΩ	51 mV
200	3128	Violet	0.29 mΩ	52 mV

*1 Voltage drop: apply 100% of the rated current (150A-200A: at 75% of the rated current).

General Specification				
Rated Voltage	DC58V			
Breaking Capacity	1000A			
Recommended Operating Temp.	-40°C~120°C*2			
Standard	ISO8820-5*3			

Country of Origin Japan

> Plating Sn Plating Standard 2,000

Packaging 2,000 Insertion _____

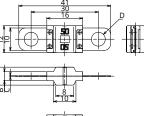
Pull-out Load —

Recommended Torque (6.0±1.0)N·m

*2 Please contact us for the details of operating temperature. *3 Except for the breaking capacity

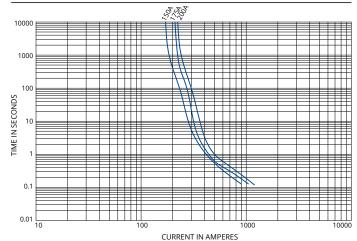
Time-Current Characteristic [30A~125A]

% of	Operating Time		
Ampere Rating(A)	Min	Max	
100%	100hrs.	_	
110%	4hrs.	-	
150%	90sec.	3600sec.	
200%	3sec.	100sec.	
300%	0.3sec.	3sec.	
500%	0.1sec.	1sec.	


Time-Current Characteristic [150A~200A]

% of	Operating Time		
Ampere Rating(A)	Min	Max	
75%	100hrs.	_	
200%	1sec.	15sec.	
350%	0.3sec.	5sec.	
600%	0.1sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.


33

CURRENT			DIMENSION		
RARING		Α	В	С	D
30A~80A	M6 TYPE	8	4	0.4	6.2
100A~200A	M6 TYPE	8.24	4.24	0.64	6.2

Time-Current Characteristic Chart

*Please refer to the blowing characteristic graph of the 30A to 125A fuses on page 32.

SBFW-K

International Standard Part

ELV

PEC

SBF

High-amperage bolt type fuse

RoHS

Product Lineup

Ampere Rating(A)	Part Number	Housing	Colors	Resistance Value	Voltage Drop*1
80	3102	Red		0.72 mΩ	85 mV
100	3112	Yellow		0.58 mΩ	83 mV
125	3122	Green		0.44 mΩ	82 mV
150	3132	Orange		0.36 mΩ	89 mV
175	3142	White		0.32 mΩ	91 mV
200	3152	Blue		0.30 mΩ	95 mV
225	3162	Tan		0.26 mΩ	97 mV
250	3172	Pink		0.24 mΩ	100 mV
300	3182	Gray		0.20 mΩ	63 mV
350	3134	Dark Green		0.18 mΩ	50 mV
400	3144	Violet		0.16 mΩ	52 mV
450	3154	Dark Yellow		0.14 mΩ	56 mV
500	3164	Brown		0.13 mΩ	63 mV

*1 Voltage drop: apply 100% of the rated current (300A-500A: at 75% of the rated current).

Rated Voltage	DC32V
Breaking Capacity	2000A
Recommended Operating Temp.	-40°C~120°C*2
Standard	ISO8820-5
Country of Origin	Mexico
Plating	Sn Plating
Standard Packaging	1,200

General Specification

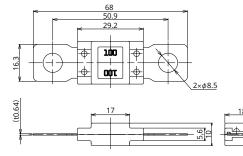
Insertion Force

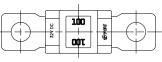
Pull-out Load —

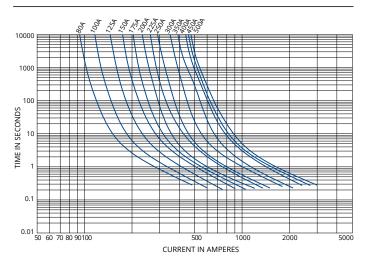
Recommended Torque (12.0±1.0)N∙m

*2 Please contact us for the details of operating temperature.

Time-Current Characteristic [80A~250A]


% of	Operating Time		
Ampere Rating(A)	Min	Max	
100%	4hrs.	_	
135%	120sec.	1800sec.	
200%	1sec.	15sec.	
350%	0.3sec.	5sec.	
600%	0.1sec.	1sec.	
500%	0.1sec.	1sec.	


Time-Current Characteristic [300A~500A]


% of	Operating Time		
Ampere Rating(A)	Min	Max	
75%	4hrs.	_	
200%	1sec.	15sec.	
350%	0.5sec.	5sec.	
600%	0.1sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

Slow Blow Fuse

SBFC-BT

RoHS

ELV

PEC

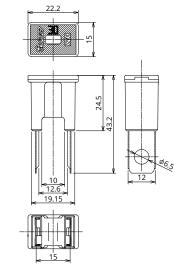
Bolt type fuse

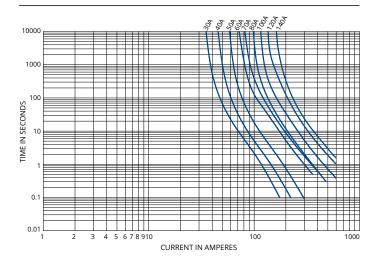
Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
30	3136	Pink	3.0 mΩ	94 mV
40	3146	Green	2.2 mΩ	98 mV
50	3156	Red	1.7 mΩ	95 mV
60	3166	Yellow	1.3 mΩ	83 mV
70	3176	Brown	1.0 mΩ	93 mV
80	3186	Black	0.84 mΩ	66 mV
100	3206	Blue	0.67 mΩ	66 mV
120	3226	White	0.62 mΩ	62 mV
140	3246	Maroon	0.55 mΩ	86 mV

*1 Voltage drop: apply 100% of the rated current.

General Specification				
Rated Voltage	DC32V			
Breaking Capacity	1000A			
Recommended Operating Temp.	-40°C~120°C*2			
Standard	ISO8820-4			
Country of Origin	Japan			
Plating	_			
Standard Packaging	500			


- Insertion Force
- Pull-out Load —
- Recommended Torque (6.0±1.0)N·m *2 Please contact us for the details of operating temperature.


Time-Current Characteristic

% of Ampere Rating(A)	Operating Time		
	Min	Max	
110%	100hrs.	_	
200%	5sec.	100sec.	
350%	0.2sec.	7sec.	
600%	0.04sec.	1sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions

SBFC-CT

International **Standard Part**

RoHS

ELV

General Specification

Rated Voltage DC32V Breaking Capacity

Recommended Operating Temp.

1000A

Standard ISO8820-4

500

(4.5±1.0)N·m

Min

100hrs.

5sec.

0.2sec.

0.04sec.

*The fuse characteristic may change depending on

Operating Time

Max

_

100sec.

7sec.

1sec.

Country of Origin Japan

Plating —

*2 Please contact us for the details of

Time-Current Characteristic

Standard

Packaging Insertion Force Pull-out Load —

Recommended Torque

operating temperature.

% of

Ampere Rating(A)

110%

200%

350%

600%

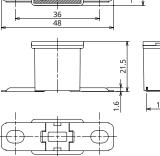
the conditions of use.

-40°C~120°C*2

Here and the second sec

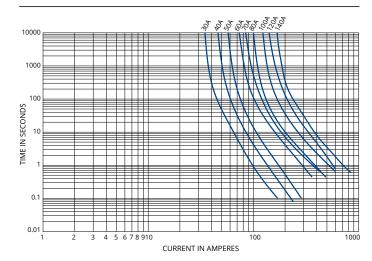
SBF

Bolt type fuse

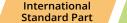


Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
30	3233	Pink	3.0 mΩ	105 mV
40	3243	Green	2.1 mΩ	105 mV
50	3253	Red	1.7 mΩ	96 mV
60	3263	Yellow	1.1 mΩ	74 mV
70	3273	Brown	1.0 mΩ	78 mV
80	3283	Black	0.63 mΩ	61 mV
100	3303	Blue	0.51 mΩ	65 mV
120	3323	White	0.42 mΩ	67 mV
140	3343	Maroon	0.36 mΩ	68 mV

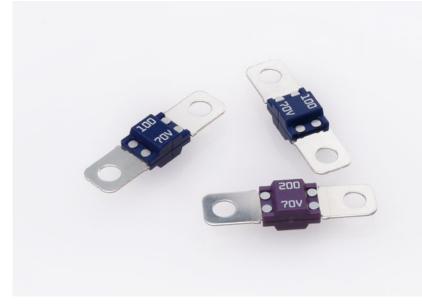

*1 Voltage drop: apply 100% of the rated current.

Dimensions	



(5.4)

Time-Current Characteristic Chart


SBFW-L48V-M6L

ELV

PEC

SBFW-L type for 48V system

Product Lineup

Ampere Rating(A)	Part Number	Housing Colors	Resistance Value	Voltage Drop*1
30	3005	Orange		120 mV
40	3015	Green		120 mV
50	3025	Red		120 mV
60	3035	Yellow		110 mV
70	3045	Brown		110 mV
80	3055	White	Coming up	110 mV
100	3065	Blue		100 mV
125	3075	Pink		100 mV
150	3085	Gray		100 mV
175	3095	Tan		100 mV
200	3006	Violet		100 mV

*Full line-up to be available in the end of 2018. Please contact us for the details.

General	Specification

RoHS

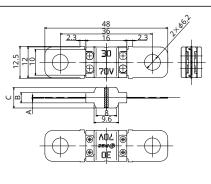
Rated Voltage DC70V

. ...

- Breaking Capacity 2500A Recommended Operating Temp. -40°C~120°C*2
 - Standard ISO20934
 - Country of Origin Japan
 - Plating Tin plating
 - Standard Packaging 2000
 - Insertion Force

Pull-out Load —

Recommended Torque (9.0±1.0)N·m

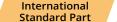

*2 Please contact us for the details of operating temperature.

Time-Current Characteristic

% of	Operating Time		
Ampere Rating(A)	Min	Max	
100%	100hrs.	_	
135%	300sec.	3600sec.	
150%	90sec.	500sec.	
200%	1sec.	50sec.	
300%	0.3sec.	4sec.	
500%	0.1sec.	1sec.	
600%	0.07sec.	0.7sec.	

*The fuse characteristic may change depending on the conditions of use.

Dimensions


CURRENT	DIMENSION			
RARING	Α	В	С	
30A~80A	0.4	4	8	
100A~200A	0.64	4.24	8.24	

Time-Current Characteristic Chart

Data Coming up

SBF

SBFW-K48V-M8

ELV

SBF

SBFW-K type for 48V system


Product Lineup

Ampere Rating(A)	Part Number	Housing	Colors	Resistance Value	Voltage Drop*1
			201013		
60	3090	Light Blue		1.03 mΩ	110 mV
80	3001	Red		0.75 mΩ	110 mV
100	3011	Yellow		0.55 mΩ	110 mV
125	3021	Green		0.43 mΩ	110 mV
150	3031	Orange		0.36 mΩ	110 mV
175	3041	White		0.30 mΩ	110 mV
200	3051	Blue		0.80 mΩ	110 mV
225	3061	Tan		0.23 mΩ	110 mV
250	3071	Pink		0.22 mΩ	110 mV
300	3091	Gray		0.17 mΩ	80 mV
350	3002	Dark Green		0.15 mΩ	80 mV
400	3012	Violet		0.13 mΩ	80 mV
450	3022	Dark Yellow		0.12 mΩ	80 mV
500	3032	Brown		0.11 mΩ	80 mV

*1 Voltage drop: apply 100% of the rated current (300A - 500A: at 75% of the rated currrent). *Full line-up to be available in the end of 2018. Please contact us for the details.

General Specification	

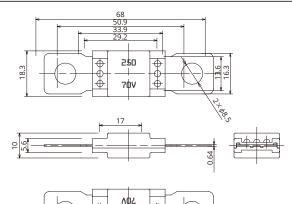
Dimensions

RoHS

Breaking 2500A Capacity Recommended Operating Temp. -40°C~120°C*2

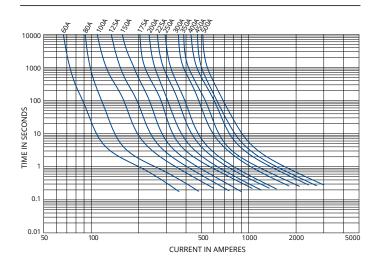
- Standard ISO20934
- Country of Origin Japan
 - Plating Tin plating
- Standard 400 Packaging
- Insertion
- Force
- Pull-out Load —
- Recommended (20.0±1.0)N·m Torque *2 Please contact us for the details of

operating temperature.


Time-Current Characteristic [80A~250A]

% of	Operating Time		
Ampere Rating(A)	Min	Max	
100%	4hrs.	_	
135%	120sec.	1800sec.	
150%	20sec.	450sec.	
200%	1sec.	15sec.	
350%	0.3sec.	5sec.	
600%	0.1sec.	1sec.	

Time-Current Characteristic [300A~500A]


% of	Operating Time		
Ampere Rating(A)	Min	Max	
75%	4hrs.	_	
200%	1sec.	15sec.	
350%	0.5sec.	5sec.	

*The fuse characteristic may change depending on the conditions of use.

Time-Current Characteristic Chart

38

Meeting the needs of the diverse and complex automotive circuits. PEC's Multi terminal Slow Blow Fuses with compact multi-circuits

0

Multi Slow Blow Fuse

- Mi i	lti S	RI		Fuse
IVIU			J v v	i use

MUSB-A

ELV

For 2 circuits

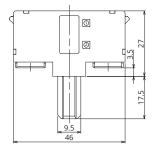
Genera	Specification
--------	---------------

Dimensions

Rated Voltage DC32V

Breaking Capacity 1000A

Recommended Operating Temp. -40°C~100°C*²


Standard —

Country of Origin Japan

Plating —

Standard Packaging 300

*2 Please contact us for the details of operating temperature.

PEC

	Part Number	FUSE 1	FUSE 2
1	3580	100A	70A
2	3581	120A	70A
3	3582	100A	40A
4	3583	120A	40A
5	3584	100A	60A
6	3585	80A	50A
7	3589	80A	70A
8	3579	100A	30A
9	3621	60A	50A
10	3622	120A	60A

Mu	lti S	BLOW	Fuse
IVIU	ເບິ່ງ	ייטום	I USE

MUSB-B

For 2 circuits

General Specif	Dimensions	
Rated Voltage	DC32V	
Breaking Capacity	1000A	
Recommended Operating Temp.	-40°C~100°C*2	

Standard —

Country of Origin Japan

Plating —

Standard Packaging 600

*2 Please contact us for the details of operating temperature.

10.4

MUSB

PEC

	Part Number	FUSE 1	FUSE 2
1	3590	40A	50A
2	3591	50A	50A
3	3592	30A	30A
4	3593	30A	40A
5	3594	60A	50A
6	3595	40A	20A
7	3626	30A	50A
8	3628	40A	40A
9	3573	20A	20A

N/III	lti C	RI.	Fuse
iviu	ເບັ		ruse

MUSB-L3

ELV

For 4 circuits

Rated Voltage DC32V Breaking 1000A Capacity 1000A Recommended Operating Temp. -40°C~100°C*2

Standard —

General Specification

Country of Origin Japan

Plating —

Standard Packaging 480

*2 Please contact us for the details of operating temperature.

Dimensions

23.4 24.4 **PEC**

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4
1	3682	20A	20A	20A	20A
2	3683	40A	40A	40A	40A
3	3684	30A	30A	30A	30A
4	3685	20A	30A	30A	30A
5	3686	30A	40A	30A	40A

MUSB-J1

ELV

For 5 circuits

General Specif	ication	Dimensions	
Rated Voltage	DC32V	×	91
Breaking Capacity	1000A		
Recommended Operating Temp.	-40°C~100°C*2		
Standard	_	1	
Country of Origin	Thailand		
Plating	_		
Standard Packaging	210		 <u>- 18.5</u>
*2 Please contact us for operating temperature		-	<u>ح</u> 74

Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5
1	3614	120A	80A	40A	50A	30A
2	3616	140A	80A	50A	50A	30A
3	3618	140A	60A	50A	50A	30A
4	3619	150A	80A	50A	50A	30A
5	3623	140A	60A	40A	30A	30A

MUSB

PEC

36.1

8.2 10.25

8.5

N /	1+: C	0.14		 Fuse
			в	FUSe

MUSB-L1

ELV

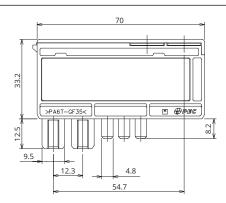
For 6 circuits

Dimensions

Rated Voltage DC32V

Breaking Capacity 1000A

Recommended Operating Temp. -40°C~100°C*²


Standard —

Country of Origin Japan

Plating —

Standard Packaging 320

*2 Please contact us for the details of operating temperature.

PEC

Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6
1	3692	70A	40A	30A	30A	30A	100A
2	3693	70A	30A	40A	20A	30A	100A
3	3694	70A	70A	40A	20A	30A	150A
4	3695	70A	40A	20A	40A	30A	120A
5	3696	70A	70A	40A	30A	30A	150A
6	3697	70A	70A	30A	40A	30A	120A
7	3698	70A	60A	40A	20A	30A	125A
8	3699	70A	30A	40A	20A	30A	150A
9	3717	60A	40A	30A	30A	30A	BUSBAR
10	3716	70A	40A	40A	20A	30A	100A
11	3715	60A	70A	40A	30A	40A	150A
12	3714	70A	50A	40A	20A	30A	200A

MUSB

MUSB-P2

ELV

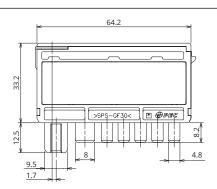
For 7 circuits

General	Snecifi	cation

Dimensions

Breaking Capacity 1000A

Recommended Operating Temp. -40°C~100°C*²


Standard —

Country of Origin Thailand

Plating —

Standard Packaging 240

*2 Please contact us for the details of operating temperature.

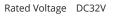
Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6	FUSE 7
1	3664	70A	60A	40A	30A	30A	40A	30A
2	3665	70A	40A	20A	40A	30A	40A	30A
3	3666	70A	40A	40A	30A	20A	30A	30A
4	3667	70A	40A	30A	40A	30A	40A	30A
5	3668	70A	60A	40A	30A	30A	20A	40A

PEC

MUSB-M2

RoHS

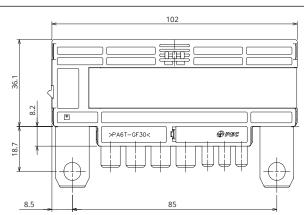

ELV

For 8 circuits

Dimensions

Breaking Capacity 1000A

 $\begin{array}{c} \text{Recommended} \\ \text{Operating Temp.} \end{array} \ \ \text{-40°C}{^{-100°C^{*2}}} \end{array}$


Standard —

Country of Origin Thailand

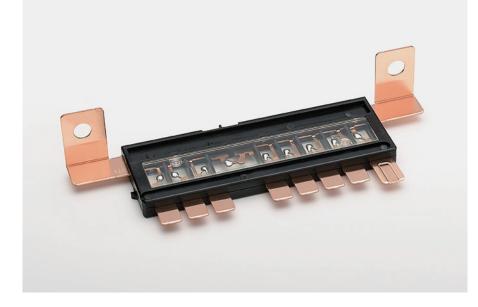
Plating —

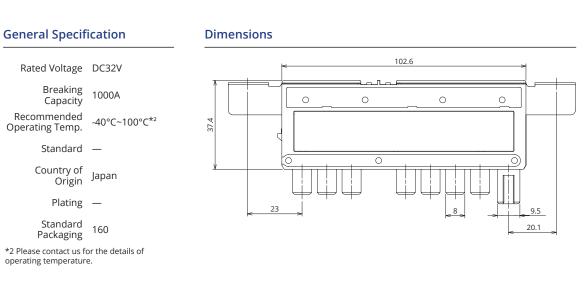
Standard Packaging 160

*2 Please contact us for the details of operating temperature.

PEC

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6	FUSE 7	FUSE 8
1	3624	80A	50A	50A	50A	30A	30A	30A	120A
2	3625	80A	50A	50A	50A	30A	30A	30A	140A
3	3731	80A	50A	50A	40A	40A	30A	30A	140A
4	3732	80A	50A	50A	40A	40A	30A	30A	150A
5	3733	50A	50A	50A	40A	30A	30A	40A	100A
6	3734	80A	50A	50A	30A	30A	30A	40A	140A
7	3735	80A	50A	50A	50A	40A	30A	30A	150A


Multi Slow Blow Fuse


MUSB-F

RoHS

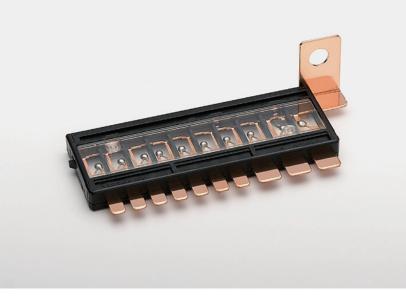
ELV

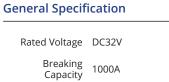
For 9 circuits

Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6	FUSE 7	FUSE 8	FUSE 9
1	3654	60A	60A	40A	40A	40A	40A	60A	60A	150A
2	3655	50A	40A	30A	40A	40A	40A	40A	50A	150A
3	3656	50A	50A	30A	40A	40A	40A	40A	80A	150A
4	3657	50A	50A	30A	40A	40A	40A	40A	80A	125A
5	3747	40A	50A	50A	50A	40A	30A	40A	80A	150A

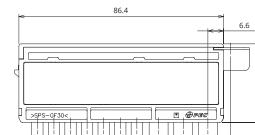
MUSB


PEC


/			
N /I I + i	Cloud	DIANA	Fuco
IVIUILI	SIUW	Blow	Fuse

MUSB-P1

For 10 circuits



Recommended Operating Temp. -40°C~100°C*²

Standard —

Country of Origin Thailand

*2 Please contact us for the details of operating temperature.

PEC

<u>.</u>

8.2

9.5

Dimensions

Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6	FUSE 7	FUSE 8	FUSE 9	FUSE 10
1	3643	60A	40A	30A							
2	3644	60A	40A	30A	30A	20A	30A	30A	30A	30A	30A
3	3645	60A	40A	50A	30A						
4	3646	60A	40A	50A	30A	20A	30A	30A	30A	30A	30A
5	3647	60A	50A	60A	40A	30A	30A	30A	30A	20A	40A
6	3648	60A	50A	60A	40A	30A	40A	40A	40A	20A	40A
7	3649	60A	30A	60A	40A	20A	30A	30A	30A	20A	30A
8	3712	60A	50A	60A	40A	30A	40A	40A	30A	20A	40A

Plating —

Standard Packaging 160

MUSB

MUSB-L2

ELV

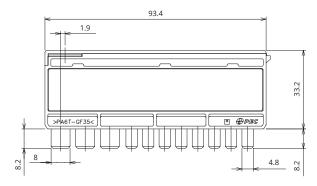
For 11 circuits

General Specification Rated Voltage DC32V

Breaking Capacity

Recommended Operating Temp. -40°C~100°C*²

Standard —


Country of Origin Japan

Plating —

Standard 240 Packaging 240 *2 Please contact us for the details of operating temperature.

1000A

Dimensions

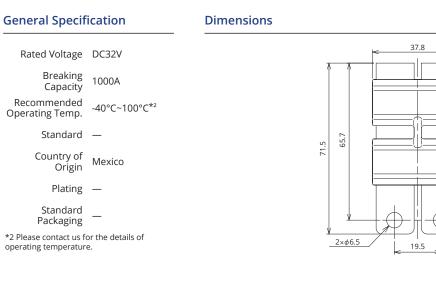
Product Lineup

	Part Number	FUSE 1	FUSE 2	FUSE 3	FUSE 4	FUSE 5	FUSE 6	FUSE 7	FUSE 8	FUSE 9	FUSE 10	FUSE 11
1	3672	50A	60A	60A	30A	30A	30A	30A	40A	30A	20A	20A
2	3673	50A	60A	60A	30A	30A	40A	30A	40A	30A	20A	20A
3	3674	50A	60A	40A	30A	30A	30A	30A	40A	30A	30A	30A
4	3675	50A	60A	40A	30A	30A	30A	30A	40A	30A	20A	20A
5	3676	50A	60A	60A	30A	30A	40A	30A	40A	30A	30A	30A
6	3677	50A	60A	60A	40A	30A	40A	40A	40A	30A	30A	30A
7	3678	30A	60A	60A	40A	30A	40A	40A	40A	30A	30A	30A
8	3679	30A	60A	60A	30A	30A	40A	20A	40A	30A	30A	40A
9	3791	30A	60A	60A	30A	30A	30A	30A	40A	30A	20A	20A
10	3792	30A	60A	60A	30A	30A	40A	30A	40A	30A	20A	20A
11	3793	30A	30A	20A	20A	30A	40A	30A	30A	40A	30A	20A
12	3794	30A	60A	60A	30A	30A	40A	30A	40A	30A	30A	30A
13	3975	70A	60A	30A	40A	30A	30A	40A	40A	30A	30A	30A

PEC

Mu	L: C		Г .	
- IX/I I I		BIO	\A/ EI	
IVIU			VV I V	ase.

MUSB-T



For 3 circuits

Product Lineup


	Part Number	FUSE 1	FUSE 2	FUSE 3
1	3729	125A	100A	325A
2	3739	125A	70A	375A
3	3738	125A	80A	375A
4	3737	125A	80A	300A
5	3736	125A	275A	200A

PEC

Integration of multiple fuse circuits with the battery terminal Possibility of direct attachment onto the battery, hence battery cable slimination

Fuse accessories which make the fuse mounting and replacement easy and safe

Accessories

1

Accessories

BFAT Fuse Holders

PEC

Fuse Holder (Connector Type)

RoHS	ELV

Exclusive for BFAT (1pc)

Product information

Part Number	1514-0000
Connector type for connecting	250 Perpendicular 2P-F connector
Rating	BFAT rated to 30A

Fuse Holder (Connector Type)

Exclusive for BFAT (2pcs)

Product information

Part Number	1406-2100			
Connector type for connecting	250 Parallel 4P-F connector			
Rating	BFAT rated to 30A			
*The maximum permissible current for two-pole electrical distribution is total 30A				

Inline Holder

RoHS	ELV

Exclusive for BFAT

Product information

Connector type for connecting

Casing: 1512-2100

- Terminal (small):1512-2400 (wire size: 0.5 1.25sq.mm)
- Terminal (large):1512-3400 (wire size: 2.0 3.0sq.mm)

*Casing and terminal are ready to be assembled by the customer

Rating BFAT rated to 30A

BFAT Terminals

Terminals to install BFAT fuses onto a PCB

Product information

Part Number	1502-0000
Rating	BFAT rated to 30A

SBF Fuse Holders

Fuse Holder (Block No.17)

Accessories Short Pins

BFMN-SP

BFLP-SP

RoHS ELV

PEC

For interrupting dark current (Exclusive for BFMN)

Product information

Part Number

ELV

Accessory

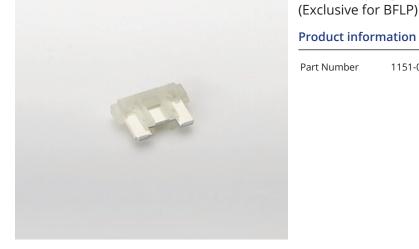
Product information

RoHS

Part Number 1151-0000

For interrupting dark current

Fuse Holder (Block No.33)



RoHS	ELV

Exclusive for SBFC-AS (3pcs)

Product information

Part Number 3562-0000

Accessories

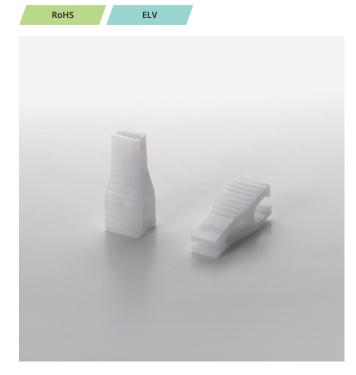
Fuse Pullers

Essential product to easily extract the BF at the time of replacement

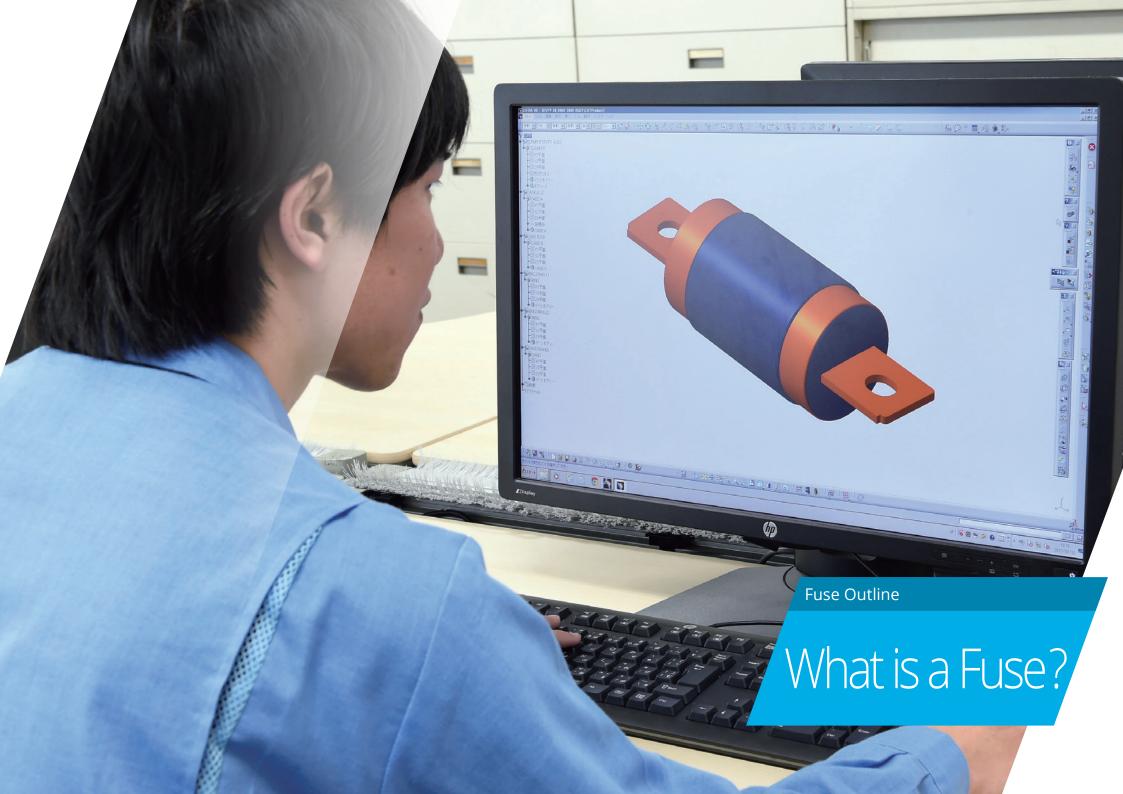
Fuse Pullers No.2

Product information

Part Number	1506-0000
Type of fuse	BFAT


Fuse Pullers No.7

Product information


Part Number 1509-2000 Type of fuse BFAT, BFMN

Fuse Pullers No.9

Product information

Part Number	1509-4000
Type of fuse	BFMN, BFLP

What is a Fuse?

It is said that Thomas Edison, the inventor of the light bulb, first put forth the idea of a fuse. Ever since, fuses have been widely used across a wide range of applications to ensure the safety of electric circuits and protect devices.

Electric circuits are connected to various devices through electric wiring and switches that receive electricity from a power source. Fuses are installed in series with the electric circuit on the upstream flow of electricity and are designed to immediately interrupt the circuit when exposed to overcurrent resulting from a short-circuit on the downstream flow. They are therefore critical components that protect the wiring and devices in an electric circuit from damage caused by fires and the like.

When exposed to overcurrent, a fuse's metal element, which is distinguished by a small cross-sectional area, reaches its melting point and subsequently blows. This effectively interrupts (protects) the circuit.

Fuses are classified into different types depending on their usage purpose and application. For example, there are fuses for high-voltage insulating structures, cylindrical fuses for applications that receive or distribute electricity, tube-type fuses used in residential electric appliances, surface-mount fuses for printed wiring boards, and automotive fuses.

Automotive Fuses

Even when confining the discussion to automotive fuses, these can still be divided in a wide range of types based on usage purpose. (Figure 1)

Among this large variety of automotive fuses, the type that has made most headway with standardization and is currently employed in vehicles all over the world is the blade fuse (BF). In recent years, the number of fuses installed per vehicle has increased in tandem with wider adoption of electric and digital systems in automobiles, an increase in the number of on-board devices, and a shift to increasingly compact fuses.

Figure 1: Automotive fuse types

BF (Quick blow type)

SBF (Slow blow type)

MUSB (Slow blow type)

Characteristics of Automotive Fuses

Automotive fuses differ in their application from other types due to their exposure to vibrations, ambient temperature and other factors, as well as in terms of precision and reliability. In other words, they are required to operate under much more demanding conditions. In addition, their size and weight are also important elements.

[Special Requirements for Automotive Fuses]

(1) Vibrations

Automobiles are exposed to vibrations under a wide range of conditions including when driving continuously on highways, when driving on poor or cobbled roads, or when idling. Automotive fuses must be able to withstand a vibration acceleration of 44.1m/s2 for automobiles and 196m/s2 for motorcycles, and guarantee performance even when exposed to resonance vibration from frequency changes.

(2) Ambient Temperature

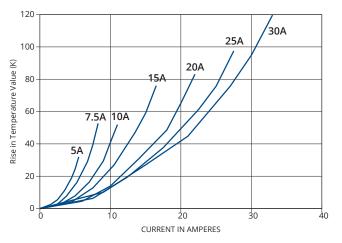
Automobiles are expected to deliver problem-free driving performance both in the scorching heat of desert environments and in areas subjected to extreme cold. Moreover, because fuses are installed in the engine compartment and the passenger compartment, they are required to function within a broad temperature range of -40-120°C.

(3) Precision

Automobiles vary widely in weight depending on their fuel efficiency, and they tend to utilize extremely compact electric wiring to achieve a corresponding reduction in weight. For this reason, the actual current used in automotive electrical wiring is close to the allowable current capacity, and the time-current characteristics of fuses must be managed within this narrow range. (4) Reliability

When a fuse malfunctions during driving, it immediately impairs the vehicle's ability to drive. If this occurs while driving on a highway or in similar circumstances, it can lead to serious accidents. In today's world, where vehicles have an average service life that exceeds over 10 years, fuses are required to deliver durability in the form of sustained functionality amid various changes in environment.

(5) Size and Weight


If we look at automobiles in the context of the CO_2 emission regulations specified in the Kyoto Protocol, we learn that the CO_2 emissions generated while driving are substantially higher than the ones generated when producing the parts, materials and vehicle itself or when disposing of a vehicle. Accordingly, vehicle weight reduction is an important factor for the automotive sector, and fuses are also expected to be compact and lightweight while at the same time guaranteeing performance.

Temperature Rises in Fuses

Fuses have a specific electric resistance value. When exposed to current, their temperature will rise depending on the load. (Figure 2) Test results for temperature rises can vary significantly based on the type of jig or fuse connection used, and fuse performance is therefore measured using a standard jig (i.e., specified by a relevant industry standard). Because measurements of temperature rise in the lab will be different from data obtained during actual driving, the general approach is to conduct a second evaluation based on reliability tests for each vehicle model. Fuses with connection terminals made out of heat-resistant copper alloy are able to withstand a temperature of up to 140°C. If we assume a temperature of 80°C inside

the engine compartment, this means the fuses can handle a temperature increase of 60K.

Figure 2: Temperature rise

Time-current Characteristics of Fuses

Time-current characteristics are the most important specifications of fuses.

Fuses are designed to only withstand continuous current that is equivalent to their rated current. When the current flowing through a fuse exceeds the rated current, the fuse must cut off the current within a predetermined time interval, thus ensuring the current flow is interrupted.

For this reason, the melting time of a fuse when exposed to overcurrent is specified by international and national standards for each type of fuse. In the case of BFMN fuses (Figure 3), which are the most common type in use today, the applicable standards are ISO 8820-3 (international), JASO D612 (Japan) and SAE J2077 (US). These standards specify uniform time-current characteristics, which are regarded as the international standard.

[Rated values (Table 1), time-current characteristics (Figure 4)]

Time-current standard values specify an upper threshold for the melting time to prevent an overcurrent from flowing continuously and resulting in fire or damage to connected electrical wiring and electric devices. This is the ultimate purpose of a fuse. At the same time, a lower threshold is specified to ensure the current is not interrupted during the initial rush at the start of the current flow, and thus ensure durability.

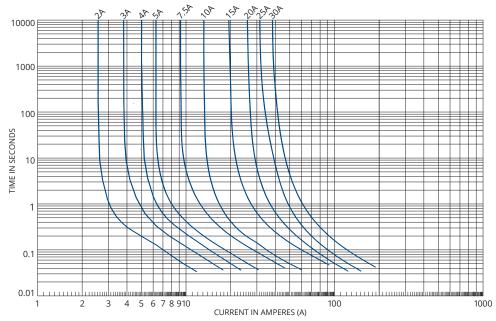
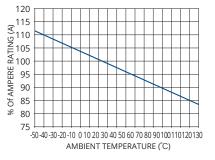

Time-current characteristics differ by fuse type. For example, motor circuits employ slow blow fuses (SBF) that feature a slow-blow mechanism to withstand the comparatively long current rush that is produced when a motor starts operating. It is common practice to use SBFs for circuits using motors of automatic wipers and power windows, and BFs for applications such as lamps.

Figure 3: BFNM

Table 1: Rated time-current characteristics

% of Ampere Rating (A)	Operating Time
110%	100hrs.
135%	0.75~600sec.
160%	0.25~50sec.
200%	0.15~5sec.
350%	0.04~0.5sec.
600%	0.02~0.1sec.

Figure 4: Time-current characteristics

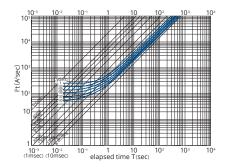


PEC

Fuses and Ambient Temperature

The metal element inside a fuse is designed to melt through Joule heat produced by overcurrent, thus interrupting the current flow in the circuit. Because the Joule heat (I²Rt) required to melt the metal element differs based on the ambient temperature, the time at which the metal element in the fuse will reach its melting point will also vary. In other words, the actual capacity of a fuse will vary based on the ambient temperature. The amount of change from the actual capacity is referred to as the temperature change rate. The temperature change rate differs based on the

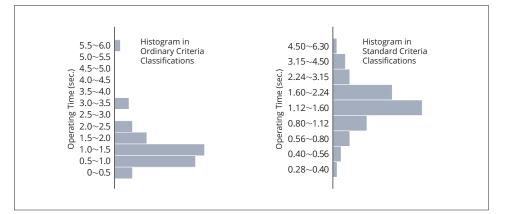
Figure 5: Fuse Temperature Change Rate


type of metal element used. For example, a 10A-rated BF with a zinc element has an actual capacity of 8.5A at an ambient temperature of 120°C, and the temperature change rate is -0.15%/°C (Figure 5). The corresponding rate is -0.075%/°C assuming a copper element and -0.14%/°C in the case of a copper-tin element.

Durability of Fuses

The durability (i.e., service life) of a fuse depends on the load, current waveforms, ambient temperatures and other factors. If exposed to a consistent current frequency, the service life of a fuse (total usage count) can be easily determined from the I²t characteristics diagram (Figure 6) organized by capacity.

Fuses need to have a capacity that exceeds the service life (total usage count) demanded by automakers. In the case of continuous current flow, they are recommended to be used with a rate load of 70% or below.


Figure 6: I²t characteristics diagram

Fuse Precision

The melting time does not simply exhibit a direct proportional correlation with the actual current value, but rather is determined by the Joule heat (l²Rt) generated by the passing current value. Accordingly, when verifying variations in the melting time or conducting quality guarantee tests such as frequency distribution and measuring actual current values, an error can occur in the form of a negative LCL time. By using a standard value (JIS Z8601) in statistical analysis, the variation in the skewed melting time returns to a normal distribution, enabling the use of general quality control management methods. (Figure 7)

Figure 7: Variation in melting time

Fuses and Electric Wiring

To ensure fuses conform with devices and connected electric wiring and thus protect related circuits, it is necessary to select electric wiring of a suitable size that can handle the fuse's rated current. (Figure 8)

(1) Load Current

For blade fuses, Fuses should be selected in such a way as to ensure the load current does not exceed 70% of the rated current. When setting the load current value, the following factors should be considered.

- Is the load current continuous or pulsed?

— Is there a current surge when turning the switch on?

- Intermittent or continuous current?

(2) Ambient temperature

A fuse's time-current characteristics are affected by ambient temperature, so the ambient temperature

at the location where the fuse is installed must be considered. A fuse's rated current is calculated based on the ambient temperature and the rate of change in capacity (Figure 5).

(3) Fusing Current

The current at which the fuse should precisely blow is determined from a blowing standard.

(4) Maximum Circuit Resistance

To guarantee fuses' time-current characteristics, the maximum circuit resistance value is required while also taking into account the ambient temperature of the electric wiring.

(5) Selection of Smallest Wire Size

For the electric wiring size, select a size for which the resistance value after factoring in the wiring length is smaller than the maximum resistance value for the circuit. The correlation between a representative fuse's rated current and the electric wiring size and length is shown in Figure 2.

Figure 8: Time-current characteristics of a fuse and smoke-producing characteristics of electrical wiring

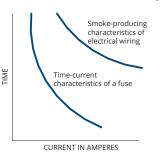


Table 2: Correlation between fuse rating, electric wiring size and electric wiring length

Fuse Ampere	Nominal Cross Sectional Area of Wires (mm ²)						
Rating (A)	0.3	0.5	0.85	1.25	2	3	5
3	37	—	—	—	—	—	—
4	38	43	—	—	—	—	—
5	22	34	—	—	—	—	—
7.5	15	23	36	—	—	—	—
10	11	17	27	39	—	—	—
15		11	18	26	43	—	—
20			13	19	32	—	—
25				15	25	40	_
30					21	34	_

* The figures in the middle of the table show the maximum length of the electric wiring (m). * Values exceeding 50m are indicated with "-".

* Taken from JASO D610

Automotive Fuse Ratings

Fuses utilized in general home appliances are specified by the JIS standards, but automotive fuses are a specialized type of fuse covered by the JASO standards in Japan. The JASO standards for automotive fuses are the only public standard governing automotive fuses in Japan. JASO is part of the Society of Automotive Engineers of Japan, and its standards are deliberated by an automotive electronics subcommittee with members consisting of automakers, fuse users, fuse makers and third parties. As the only Japanese specialized fuse maker, PEC serves as the executive secretary of the subcommittee and contributes to the standardization work in that capacity.

The global standard for automotive fuses is ISO8820, which has been established under the international ISO standards. The fuse subcommittee works to support Japanese compliance with ISO standardization activities. PEC participates in international conferences as a Japanese representative member and deliberates international standards with representative members from other countries. The current Japanese standard is largely reconciled with the international one so the contents of JASO D612 and ISO 8820 are more or less the same.

Fuse Types

[Glass Tube Fuses]

Upon hearing the word fuse, many people first picture a glass tube fuse consisting of a glass tube that contains a metal element. Glass tubes were used as early as the 1910s to prevent accidents due to overcurrent during engine ignition. However, these fuses abruptly moved into the spotlight in the 1970s. Against the backdrop of air pollution problems linked to vehicle emissions, automakers developed engine control units (ECUs;

microprocessor-based engine controllers) with the aim of maintaining engine performance and fuel efficiency while complying with emissions regulations. The development of ECUs triggered a sudden acceleration in the adoption of automotive electronic solutions. This in turn increased demand for fuses, which play a role in ensuring the safety of electric circuits and the protection of devices.

[Blade Fuses]

Blade fuses (auto fuses) were developed in 1975 and continue to be the mainstream fuse type utilized in vehicles today. Compared with glass tube fuses, blade fuses require only half the parts, their simplified structure is ideal for mass production, and they are smaller, lighter and more durable. Amid the shift toward electronics in the automotive sector, blade fuses were rapidly adopted by automakers around the world.

[Slow Blow Fuses]

The 1980s introduced a range of automotive electronic solutions aimed at enhancing passenger comfort, including power windows and automatic wipers. As a result, vehicles came to be equipped with a large number of motors. However, motors temporarily produce a large current that exceeds their rated capacity when they are switched on. Conventional auto fuses, which immediately blow when exposed to overcurrent, were therefore not

appropriate for this type of application. Instead, automakers employed slow blow fuses, which are distinguished by a slow rise in temperature when exposed to high current and therefore do not blow immediately. PEC developed slow blow fuses in 1982 ahead of its competitors. Moving into the 2000s, automotive ECUs grew increasingly complex, resulting in the need for miniaturization of the circuit itself. The product that emerged to meet these needs was the multi slow blow fuse, which protected multiple circuits.

[EV Fuses]

From the mid-1990s, automakers started exploring the concept of environmentally friendly vehicles, giving rise to the EV fuse. Electric-powered vehicles require much higher currents than their gasoline counterparts. For this reason, conventional fuses would immediately blow and the high current would give rise to another problem in the form of the arc discharge phenomenon that could lead to destruction of circuits. The EV fuses developed by

PEC in cooperation with Toyota Motor Corporation became the first products to resolve this problem, and have been adopted in the hybrid vehicles of a large number of automakers. They have also been installed in electric vehicles that have been developed to deliver additional environmental performance since the 2000s.

Involvement in Quality Control and Environmental Protection.

Our company, together with our various group offices have received an automotive industry quality management system standard, the IATF16949 certification. In addition, regarding the environmental protection, we are certified with the ISO14001. As the good corporate citizen that we are, we will continue striving to achieve both, product quality assurance and evironmental protection. We will ensure compliance to laws and regulations and ISO standards.

Quality First

IATF 16949 Certification

PEC Manufacturing (Thailand) Ltd. January 2018 (IATF 16949:2016)

PEC de Mexico S.A. de C.V. (Guanajuato) April 2018 (IATF 16949:2016)

Ogaki Factory, Ogaki West Factory certified in September 2018 (IATF 16949:2016)

ISO 9000 Certification

Automotive parts Dept. and Air Conditioning parts Dept. cerfied in May 1997(ISO 9001) Electric parts Dept. (ISO 9002)

PEC of America Corp. certified in December 1997 (ISO 9002)

PEC de Mexico S.A. de C.V. (Tijuana) certified in October 2001 (ISO 9001:2009)

Pacific Engineeering Corporation certified in May 2003 (ISO 9001:2000)

PEC Manufacturing (Thailand) Ltd. certified in June 2003 (ISO 9001:2000)

PEC Manufacturing (Thailand) Ltd.certified in February 2009 (ISO 9001:2008)

PEC de Mexico S.A. de C.V. (Tijuana) certified in August 2010 (ISO 9001:2008)

Pacific Engineeering Corporation certified in September 2010 (ISO 9001:2008)

PEC de Mexico S.A. de C.V. (Guanajuato) certified in February 2016 (ISO 9001:2008)

PEC Manufacturing (Thailand) Ltd. certified in January 2018 (ISO 9001:2015)

PEC de Mexico S.A. de C.V. (Guanajuato) certified in April 2018 (ISO 9001:2015)

Pacific Engineeering Corporation certified in September 2018 (ISO 9001:2015)

CE	RTIFICATE	া আৰ
100	-	
		-
154	-	
10.0		
#	1	3

CERTIFICATE

ISO/IEC 17025 Certification

Quality Assurance Dept. Testing sect certified in October 2001 (ISO/IEC 17025)

Quality Assurance Dept. Testing sect certified in December 2006 (ISO/IEC 17025:2005)

	to any later of a
4	Accorditation Confliction
and the second	Finith Legisnesing Larger alian Quarte Environment Direktor Blacky Environment Augustanese
2	7.6.4, hangemarkes dyadiate Gita SP548772 Japan
	Laderal latera
	Carji Che
	004
	With a factor of the set

Create and earth-friendly environment

ISO 14001 Certification

The whole company certified in December 2001

Pacific Engineering Corporation certified in November 2005 (ISO 14001:2004)

PEC Manufacturing(Thailand)Ltd. certified in November 2010 (ISO 14001:2004)

Pacific Engineeering Corporation certified in November 2016 (ISO 14001:2015)

PEC Manufacturing (Thailand) Ltd.certified in November 2017 (ISO 14001:2015)

Network

Pacific Engineering Corporation established its manufacturing base in the city of Ogaki, known as the ^rCapital of Water_J. With a focus on the Pacifc rim region PEC supplies highquality products to various regions in Japan. In addition, PEC offers a global service in line with the world's optimal procurement strategies through its production and sales activities out of its 3 poles: Japan, Mexico and Thailand.

Technical Support offices abroad

North America	PEC of America Corporation, Detroit Technical Office
Korea	Pacific Engineering Coporation Korea Korea Technical Office.

Head Quarter Factory

Ogaki Factory

PEC of America Corporation, Detroit Technical Office PEC of America Corporation (San Diego Main Office)

PEC de México,S.A. de C.V. (Guanajuato)

Copmany Overview

Official company name	Taiheyou Seiko Kabushiki Kaisha	
Name in English	Pacific Engineering Corporation	
Establishment	October 3rd, 1961	
	Hinoki-cho 450, Ogaki city, Gifu prefecture,	
HQ address	Japan, 503-0981	
	TEL 0584-91-3131 (Main)	
	FAX 0584-91-6102	
Business Overview	Automotive Fuse development and production Precision metal stamping, Tooling die manufacturing	
Capital	JPY 98,400,000	
Sales	JPY 23,600,000,000 (as of March 2018)	
	Domestic: 383 (as of April 2018)	
Employees	Worldwide: 1196 (as of April 2018)	
	Chairman: Hirohisa Ogawa	
	President: Takahisa Ogawa	
	Vice President: Norio lo	
	Managing Director Executive Officer: Tomonao Mekada	
	Board of Directors Executive Officer: Toshinori Iwata	
Directors	Board of Directors Executive Officer: Koichiro Mabuchi	
Directors	Executive Officer: Yasushi Mawatari	
	Executive Officer: Shigehiko Ogawa	
	Executive Officer: Akihiko Yoshida	
	Executive Officer: Manabu Ota	
	Executive Officer: Kazuhiko Nakashima	
	Auditor: Isao Kawamura	

PEC Korea Technical Office.

PEC Manufacturing (Thailand) Ltd.

PEC (Shanghai) Corporation

PEC (Europe) GmbH

МЕМО			

Pacific Engineering Corporation

Head Quarter FactoryHinoki-cho 450, Ogaki city, Gifu prefecture.TEL: 0584-91-3131(Main)FAX: 0584-91-6102Ogaki FactoryKuzegawa-cho 7-5-8, Ogaki city, Gifu prefecture.TEL: 0584-81-3131(Main)FAX: 0584-81-6102URL: http://www.pecj.co.jp*We can respond to your RFQ through our web page. For details consult our home page.